If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+64t+16=0
a = -16; b = 64; c = +16;
Δ = b2-4ac
Δ = 642-4·(-16)·16
Δ = 5120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5120}=\sqrt{1024*5}=\sqrt{1024}*\sqrt{5}=32\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-32\sqrt{5}}{2*-16}=\frac{-64-32\sqrt{5}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+32\sqrt{5}}{2*-16}=\frac{-64+32\sqrt{5}}{-32} $
| 9y-4-6y=2(y+1-5 | | 13x-3=10x+6 | | 4w-8.2=20.2 | | 3+k=6.5 | | 13x-3=10+6 | | 9x^-3=7x^2 | | 3×+2+x-4=90 | | -108=7x-3(2+8x) | | 13x+3=10+6 | | n-11n+10=0 | | 5d^2-44d+90=0 | | -4=p-10/3 | | -55=11k | | 2(x-4)=56 | | 24-2x=47 | | r+5/6=31/6 | | 7-(2g-6)=-4(g+3) | | 5(x^2+25)=0 | | 12x+4+5x=39 | | 4x=9+3x | | 6=2/3a | | -3/4(2/3x+8/9)=-19/33 | | 64^(3v-2)=16 | | 64^3v-2=16 | | 7x+11x+12x=180 | | |3x+9|=6x+27 | | 4r-7(4=2r) | | 4/3+b=4/7 | | 5x+3/4x+3=11/9 | | 3.x+18=27 | | 4x+-3=5x+-21 | | 4y+7-3=8y+6-2 |